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Abstract—Images taken in bad weather conditions like haze
and fog suffer from loss of contrast and color shift. The object
radiance is attenuated in the atmosphere and the atmospheric
light is added to the scene radiance creating a veil like semi-
transparent layer called airlight. The methods proposed till now
assumes that the atmospheric light is constant throughout the
image domain, which may not be true always. Here we propose
a method that works under the relaxed assumption that the color
of atmospheric light is constant but its intensity may vary in the
image. We use the color line model to estimate the contribution
of airlight in each patch and interpolate at places where the
estimate is not reliable. We apply reverse operation to recover
the haze free image.

Index Terms—image enhancement, dehazing, color line

I. INTRODUCTION

Adverse weather conditions like fog and haze greatly reduce
the visibility of the scene. This occurs mainly due to existence
of small particles in the atmosphere. These particles deviate
the light reflected off an object from its path of propagation.
Also the environmental illumination incident on these particles
gets scattered in the direction of the observer creating a semi-
transparent layer. For these reasons images lose contrast and
their color shifts towards the color of the atmospheric light.

Image dehazing methods try to recover scene radiance by
removing the effect of haze from the image. Recovering the
scene radiance from a single image is challenging since the
amount of haze depends on the distance of the object from
the camera. So, any global enhancement methods does not
work well and recovering depth from a single image is under-
constrained. So, the earlier methods tried to solve this problem
by using more than one image. Method by Narasimhan and
Nayar [1] require multiple image of the same scene taken
under different weather condition. Polarization based method
[2] requires images with different degree of polarization.

More recent methods tackle this problem using stronger pri-
ors. Tan’s method [3] is based on the observation that clear day
images have more contrast compared to images in bad weather.
So it tries to remove haze by maximizing the local image
contrast under MRF framework. The results offer increased
visibility but the colors tend to get saturated. The first work
by Fattal [4] estimates the medium transmittance assuming
the surface shading and medium transmission functions are
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locally statistically uncorrelated. This produces better result,
but can’t handle regions where shading component does not
vary significantly compared to noise. He et al. [5] proposed
Dark Channel Prior to estimate transmission. The method is
simple and produces quite good results. But the step to refine
the transmission estimate using soft matting procedure tends to
underestimate the transmission. The second work on dehazing
by Fattal [6] is based on local color line prior. The method
estimates transmission based on the shift of the local color
line from the origin in the direction of atmospheric light.
Unlike other methods this assumes global atmospheric light
is known. The unique feature of this method is the testing of
the validity of the assumptions when estimating transmission
thus providing better results.

Our method builds upon the color line based dehazing by
Fattal [6]. We modify this method to solve the problem when
the imaging model is relaxed. However, unlike this method, we
do not assume that atmospheric light is known. Second, unlike
others, we do not try to estimate the transmission of medium.
Instead we estimate the added airlight and remove that to clear
the haze. In the rest of the paper, section II presents problem
formulation, section III the proposed method of dehazing, and
section IV present concise algorithm. Experimental results
and concluding remarks are placed in section V and VI
respectively.

II. BACKGROUND

Irradiance of a scene point from a point of observation is
given by following imaging model due to Koschmeider [7]:

I(x) = J(x)t(x) + (1− t(x))A (1)

where I(x) is the observed irradiance. J(x) is the scene
radiance. x denotes pixel position. A is the intensity of the
atmospheric light, and 0 ≤ t(x) ≤ 1 is the transmittance of the
medium describing how much of the scene radiance reaches
the observer without being scattered. When we consider RGB
color images, this equation takes the form of a 3D vector
equation where I(x), J(x), and A are vectors and t(x) still is a
scalar. This is valid because in haze and fog the transmittance
t(x) does not vary much with wavelength. The first part of
the equation, called direct transmission, provides the amount
of radiance reaching the observer without being scattered.
The second part, called airlight, describes how much of the
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Fig. 1. Colors in a patch as points in RGB space. The color line formed by
them is shifted in the direction of Â.

atmospheric light gets added due to scattering in the direction
of the observer.

Note that in equation (1) the atmospheric light A = mÂ
is assumed to be constant, where m denotes the magnitude
and Â is the direction. But in general case it may not remain
so. So, here we try to solve a relaxed version of equation (1).
We assume that in the image the direction of the atmospheric
light vector is constant but its magnitude may vary. So, the
equation (1) becomes,

I(x) = J(x)t(x) + a(x)Â; a(x) = (1− t(x))m(x) (2)

To recover haze free image using this equation, we estimate
Â and the magnitude of airlight component (a(x)) at each
position instead of estimating A as in earlier works. Then
by subtracting the airlight from the recorded image we get
J(x)t(x). Finally, we enhance the contrast of this new image
to get haze free image.

III. PROPOSED APPROACH

In this section we describe our proposed approach and
justify it through geometrical interpretation of the equation
(2) in RGB color space.

A. Color line model

Considering colors as points in the RGB space, Omer and
Werman [8] showed that for natural images colors in a small
patch should lie on a line passing through the origin. But due
to noise and camera related distortions they form an elongated
color cluster. In case of hazy images, due to the additive
airlight component, the line gets shifted from the origin by an
amount a(x) in the direction of Â (Fig.1). It is assumed that
t(x) varies smoothly and slowly in the scene except at depth
discontinuities. The magnitude of atmospheric light also varies
smoothly. So, for a small patch the equation (2) becomes

I(x) = J(x)t+ (1− t)mÂ (3)

So, if we can estimate the line formed by the color points
of a patch and the direction of atmospheric light, then by
moving the line in the direction opposite to the atmospheric
light vector, we can neutralize the effect of airlight by making
it pass through the origin.

The problem in this approach is that the line in the RGB
space can be obtained only under certain assumptions. First, it
is assumed that the patch contains pixels from an object with
single reflectance value that would provide the direction of the
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Fig. 2. The plane containing the color line and Â can be computed from
I1(x) and I2(x).

line. Second, within the patch the surface normal and conse-
quently the shading component varies sufficiently, otherwise
the pixels will not form elongated cluster. So estimating the
color line direction due to the reflectance value will be error
prone. Now these assumptions may not hold in all the patches.
So, we test the validity of these assumptions on each patch
and ignore the patch if the assumptions don’t hold. Therefore
it is quite likely that for all the patches an estimate may not be
obtained. For those patches we need to interpolate the estimate.

B. Estimating Â

As already discussed we are supposed to get a line from the
color points of pixels of a patch in the RGB space, which may
have been shifted in the direction of the airlight. This color
line and Â lie on a plane (Fig.2). The normal to this plane can
be obtained from cross product of two vectors representing the
points lying on the line. The lines corresponding to different
reflectance value (Ĵ) will form different planes with Â. Since
airlight direction Â is constant throughout the image, we can
compute Â as the intersection of all the planes formed by
the origin and the color line of each patch where airlight
component is nonzero.

IV. PROPOSED ALGORITHM

Here we present the implementation of our method through
algorithmic steps. Note that this method is a modification of
color line based method of Fattal [6] (denoted by dehazeCL
subsequently) to work under relaxed imaging equation (2).

A. Computing Â

As already stated, to compute Â we need the planes
containing the fitted line for each patch and the origin. Similar
to what is done in dehazeCL [6], to fit a line in each patch,
we apply RANSAC [9] to the points in RGB space and get
two points ~p1 and ~p2 lying on the line and a set of inliers.
The estimated equation of the line is ~P = ~P0 + ρ ~D, where ρ
is line parameter, direction ratio ~D = ~p2−~p1

‖~p2−~p1‖ and ~P0 = ~p1.
The normal to the plane containing the line and the origin is
computed as ~N = ~p1×~p2

‖~p1×~p2‖ . We test the estimated line with
conditions namely, significant number of inliers, positive slope
of ~D and unimodality similar to [6] and discard the unreliable
ones.

We assume that the plane containing the line and the origin
also contains Â. This assumption is not valid if the estimated
line goes through origin. In that case the computed normal



cannot be useful. We check this by checking the angle between
D and P0. If this angle is less than a given threshold (θ), we
ignore the normal.

Now we have the normals ( ~N ), we may compute Â. To
make our estimate for Â more robust we discard some of the
normals from our selection based on the dark channel value
[5] of the patch. The dark channel value of a patch Ω is given
by

Dark(Ω) = min
x∈Ω

(
min

c∈{R,G,B}
Ic(x)

)
(4)

Note that the normal corresponding to patch Ωi is discarded
if the following condition holds

Dark(Ωi) ≤ λmax
Ωj

Dark(Ωj) (5)

Next from the remaining normals we compute Â by minimiz-
ing the following error

E(Â) =
∑
i

(Ni · Â)2 (6)

which boils down to solving

∂E

∂Â
= 2
(∑

i

NiN
T
i

)
Â = 0 (7)

As Â is known to be a non-null vector, we need non-trivial
solution of equation (7). So, we compute covariance matrix
from the normals, and then find the eigen vector of the
covariance matrix corresponding to the smallest eigen value
as the solution.

B. Estimation of Magnitude of Airlight Component a(x)
Â is estimated and the color line corresponding to a patch

is found, we obtain airlight component (a(x)) by minimizing
the following error

Eline(ρ, s) = min
ρ,s
‖P0 + ρD − sÂ‖2 (8)

where s denotes of airlight component. The solution of equa-
tion (8) is obtained as described in [6]. The computed airlight
component is then validated with the following conditions,
namely large intersection angle, close intersection, valid range
and shading variability. Out of them large intersection angle
and close intersection is done the same way as reported in
[6]. Test for valid range and shading variability conditions are
described below.

Valid Range. The magnitude of airlight is (1−t(x))m(x),
where t(x) varies between 0 and 1, and m(x) between 0 and√

3 (when m(x)Â is [1, 1, 1]T ). But this bound allows some
undesirable estimates which leads to overestimation. So, we
use the smallest intensity present in the patch as the upper
limit of the airlight component. If the estimate goes beyond
this value then it is ignored.

Shading Variability. The color clusters in the RGB space
are expected to be distributed along a line. If the points do
not spread much in a linear direction, the fitted line becomes
sensitive to noise. To discard such potentially bad patches we
project the inlier points on the estimated line and compute

the standard deviation. If this standard deviation falls below a
certain threshold we discard the patch.

If a patch passes all the tests, its estimated value is assigned
to all of its inlier pixels. As we consider overlapping patches,
is case a pixel may receive more than one estimate we combine
the estimates using max rule.

C. Interpolation of Estimate

In the process of estimating the airlight component a(x) we
discard quite a few patches. But to recover the haze free image
we require the airlight component at every pixel. So, we need
to interpolate the value of airlight at every pixels. This is done
by minimizing the following function

ψ(a(x)) =
∑
Ω

∑
x∈Ω

(a(x)− ã(x))2

(σa(Ω))2

+ α
∑

x

∑
y∈L(x)

(a(x)− a(y))2

‖I(x)− I(y)‖2
+ β

∑
x

a(x)
‖I(x)‖

(9)

where ã(x) is the estimated airlight component value, L(x)
is neighborhood of x and a(x) is the acceptable airlight
component to be computed. Ω denotes a patch and σa(Ω)
is the error variance of the estimate within the patch. The first
two terms constitute what is similar to the function used in [6].
To achieve better results, we add the last term which ensures
that the airlight component would be a small fraction of I(x).
The last term of (9) is used to vary the airlight component
with intensity of I(x). Finally, to minimize the energy function
given by equation (9), we convert this to the following form

Ψ(a) = (a− ã)TΣ(a− ã) + αaTLa+ βbTa (10)

where a and ã are the vector form of a(x) and ã(x). Σ is
a covariance matrix of the pixels where estimate exists. L is
the Laplacian matrix of the graph constructed by taking each
pixel as one node and connecting the neighboring nodes. The
weight of the edge between the nodes x and y is 1

‖I(x)−I(y)‖2 .
Each element of b is 1

‖I(x)‖ , and α and β are scalar controlling
the importance of each term. The equation (10) is minimized
by solving the following

(Σ + αL)a = (Σã− βb) (11)

D. Haze-free Image Recovery

Airlight at each pixel can now be obtained by computing
a(x)Â. So, the direct transmission may be recovered as follows

J(x)t(x) = I(x)− a(x)Â (12)

As we do not have t(x) explicitly, we enhance the contrast
using the airlight and try to recover J(x). Let’s say the
recovered image is Rim(x), then

Rim(x) =
J(x)t(x)

1− Y (a(x)Â)
(13)

Y (I(x)) = 0.2989IR(x) + 0.5870IG(x) + 0.1140IB(x) (14)

where Y (I(x)) computes the luma at the pixel. The idea is
that a pixel is enhanced depending on how much intensity is



Fig. 3. Result comparison.(Left to Right) Top Row: Original image by böhringer friedrich via Wikimedia commons, results of He et al.(own implementation),
dehazeCL(own implementation, airlight computed using He et al.), and our method. Bottom Row: Original Image, results of He et al., dehazeCL, and our
method

removed from it. For many pictures the image stays dark even
after this operation so we use gamma correction to restore the
overall brightness.

V. RESULTS

We have implemented our method using MATLAB R©
R2010b and generated the results. For the line fitting part
with RANSAC, we use the code of Peter Kovesi [10]. The
linear equations were solved using mldivide(\) operator. The
threshold values used to check various conditions namely,
significant number of inliers, unimodality, large intersection
angle, and close intersection are kept as quoted in [6]. For
θ (threshold of angle between D and P0), λ (equation (5)),
and shading variability condition we have used 15◦, 0.45 and
0.006 respectively as the threshold. The same values are used
for all the images. α and β usually take small values (typically
2× 10−4 and 1× 10−5) depending on the input image. Note
that in our implementation we have taken image pixel values
between 0 and 1.

In Fig.3 we show the output obtained using our method
(rightmost image in both row) along with the output of other
methods. On the first row it can be seen that in the output
of He et al. the haze in not cleared properly, specially on
the left side of the tree on the left. Also due to erroneous
estimate of airlight the mid portion turns out reddish. The
result of dehazeCL is slightly better but the result of our
method is better than both the methods. These problems don’t
occur in our method because of relaxed imaging equation and
more accurate calculation of airlight direction using multiple
patches. For the train image the output of other methods have
more contrast in some places but the colors obtained using our
method is better. More results can be found in the website1.

VI. CONCLUSION

In this paper we have proposed a image dehazing method
using a relaxed haze imaging model. We use color line

1http://www.isical.ac.in/∼sanchayan r/dehaze ncvpripg15

model to estimate Â from multiple patches of the image,
then we estimate the contribution of airlight in each patch
and interpolate at places where the estimates are unreliable.
We then use the image forming equation to recover haze
free image. Here we have estimated the airlight contribution
(a(x)Â) at each patch but not the scene transmission t(x). So,
unlike other methods we do not compute the depth map. Due
to the unavailability of t(x) we tried to recover J(x) using eq.
(13). So, we can’t gurantee good results for all images. This
part should be modified to improve the results. Our method
assumes that within an image, Â is constant but the magnitude
of airlight varies. So, our method may fail to give satisfactory
results where this is violated, e.g. nighttime haze images.
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