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Image Dehazing

Figure: Hazy image and its dehazed version




Imaging Equation

Image formation in haze is modeled as follows [1]
I(x) = J(x)t(x) + (1 — t(x)) A (1)

Common Assumptions,

» For RGB image I(x), J(x) and A are 3 x 1 vectors and t(x) is
a scalar, assuming it to be constant across color channels.

» The environmental illumination (A) is constant in the whole
scene.




Imaging Equation

Assumption,
» For RGB image I(x), J(x) and A are 3x1 vectors and t(x) is a
scalar, assuming it to be constant across color channels.
» The environmental illumination (A) is constant in the whole
scene.
This constant environmental assumption is true only when the sky
is overcast[1].




I(x) = J(x)t(x) + (1 — £(x)) A, (2)

is changed to
I(x) = J(x)t(x) + (1 = t(x)) A(x). (3)

Where, A is changed to A(x) to account for the space-variant
illumination within an image.




Relaxed Imaging Equation

We don't use relaxed equation in its original form. Instead we use
the following,

I(x) = J(x)t(x) + (1 — t(x))A(x), (4)
= J(X)t(x) + K (). (5)

Threfore, given an image we try to estimate ¢(x) and K (x) using a
CNN.




» Interdependence of ¢(x) and K (x).

» The NTIRE Dehazing dataset contains only Hazy image and
its corresponding clear image.

» The input image can be of various sizes.




» Interdependence of ¢(x) and K (x).

» The NTIRE Dehazing dataset contains only Hazy image and
its corresponding clear image.

» The input image can be of various sizes.

Proposed way,
» Joint estimation of #(x) and K (x).




CNN Architecture
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Figure: Architecture of our proposed CNN
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Input: I(x) (MxNx3) and Output: #(x) (MxN)and K(x)
(MxNx3).
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Figure: Architecture of our proposed CNN: ¢(x) estimation path




Transmittance
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Figure: Architecture of our proposed CNN: K (x) estimation path




» Interdependence of ¢(x) and K (x).

» The NTIRE Dehazing dataset contains only Hazy image and
its corresponding clear image.

» The input image can be of various sizes.

Proposed way,
» Bi-directional Consistency Loss




Bi-directional Consistency Loss

= () = JX)(x) = K'()| - (7)

I(x) — K'(x)
Tx) = max{t'(x),e}|’

Forward Loss: L (

x)
Backward Loss: La(x)

» Works with only input image (I(x)) and ground truth clean
image (J(x)).

» This also avoids the case when a small error in t(x) deviates
the dehazed output quite a bit.

» This also ensures the network converges to the correct
solution only.




» Interdependence of ¢(x) and K (x).

» The NTIRE Dehazing dataset contains only Hazy image and
its corresponding clear image.

» The input image can be of various sizes.

Proposed way,

» Multi-level approach.




Multi-level Training

The network needs to be trained so that it handles scale variation.
So, training data generation we do the following.
» Extract overlapping patches from the both clear and
corresponding hazy images.
> In the first level, we take patches of size P x P, where
P =min{H,W} for a H x W image.

> In the second level, we extract patches of size

> In the third level patch size becomes % X %

P P
7 X3

» This halving process is repeated until the patch size falls
below 128 x 128.

All the extracted patches are resized to 128 x 128 before they are
used for training.
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This is done for patch sizes PxP = 256 x 256, 384 x 384 and
512 x 512.




Aggregation of patches

We have patches with three different sizes (256 x 256, 384 x 384
and 512 x 512). We aggregate similar sized patches.

t-patches K-patches

N o] N P[]
Aggregation P Aggregation P
by averaging by averaging

HixW1 HixW1x3

So, we will get three t and three K maps of same size by using
three different sized patches.




Aggregation of ¢(x) and K(x)

We have obtained three ¢ and three K maps. We need to
aggregate them to form single transmittance and airlight map in
the following way,

S wlVti(x)
t(x) = ==L (9)
22:1 wz( )
S wM K (x)
K(x) = &4 : (10)
Zé:l wz(K)

Here t;(x) and K;(x) denote the estimates we have obtained at
level ¢ and [ denotes the number of levels we operate on. Here, we
have taken all the weights to be 1.




Dehazed Output with the aggregated ¢(x) and K (x)

We have used Guided Filter[2] to refine (smooth) them.




After Guided Filter




Results

(d) Ren et al.[6] (e) Ours (f) Ground Truth

Figure: Comparison on image 39 of NTIRE Hazy validation dataset




Results

Image

Berman et al.[3]

Cai et al.[4]

Ren et al.[6]

Ours

Indoor

26
27
28
29
30

12.42/0.65/20.15
14.8/0.66/18.03
13.3/0.62/19.24
14.67/0.67/15.73
13.93/0.61/19.09

10.17/0.69/24.64
14.51/0.67/17.74
13.39/0.72/17.7
11.91/0.55/20.78
15.53/0.71/15.16

11.02/0.72/22.36
17.61/0.77/12.31
13.11/0.72/17.06
17.6/0.84/11.43
16.79/0.73/14.21

15.71/0.78/13.86
21.94/0.77/8.25
16.15/0.73/13.71
21.88/0.83/9.33
20.66/0.73/12.19

Outdoor

36
37
38
39
40

16.92/0.58/14.43
14.99/0.52/15.14
15.55/0.64/16.92
17.65/0.62/16.43
17.04/0.61/15.06

16.59/0.64/13.17
15.76/0.57/15.36
13.25/0.6/21.85
12.78/0.57/20.71
16.53/0.67/11.62

10.46/0.68/11.84
17.73/0.6/13.27
16.21/0.66/19.02
15.75/0.61/16.74
18.67/0.7/11.96

23.23/0.68/7.6
21.4/0.63/8.53
22.4/0.69/8.52
19.95/0.64,/10.84
22.2/0.71/7.85

Average

15.13/0.62/17.02

14.04/0.64/17.87

16.39/0.7/15.02

20.55/0.72/10.07

Table: Quantitative comparison of PSNR, SSIM, CIEDE2000 (lower
better) values on NTIRE hazy dataset




Results

Image

Berman et al.[3]

Cai et al.[4]

Li et al[5]

Ren et al.[6]

Ours

church
couch
dolls
flowerl
flower2
lawnl
lawn2
mansion
moebius
raindeer
roadl
road2

15.69/0.66/16.91
17.28/0.86/14.18
15.71/0.8/15.74
12.15/0.71/20.99
11.86/0.67/21.17
14.78/0.83/17.93
15.32/0.85/17.81
17.34/0.87/15.84
14.50/0.83/22.4
16.6/0.8/15.28
16.33/0.87/19.06
18.23/0.89/16.83

14.64/0.82/20.45
16.71/0.82/14.34
16.26/0.81/12.43
19.81/0.94/16.72
19.44/0.91/15.37
13.8/0.81/23.01
13.61/0.81/22.47
17.39/0.84/17.42
19.18/0.94/16.38
17.87/0.84/13.73
13.73/0.79/22.2
13.22/0.77/23.43

9.44/0.61/34.64

16.79/0.82/17.33
17.24/0.82/10.88
12.21/0.79/29.42
13.13/0.78/25.27
11.33/0.67/31.74

10.98/0.66/31.7

14.23/0.69/24.01
13.21/0.76/27.61

16.54/0.79/18.5

11.75/0.65/29.32
11.95/0.61/30.96

14.18/0.85/20.26
18.02/0.87/12.92
16.95/0.83/12.38
90.08/0.42/24.65
10.82/0.59/22.45
14.38/0.8/21.0
13.3/0.76/22.27
17.7/0.87/17.53
16.38/0.89/19.86
16.83/0.8/15.49
14.13/0.82/22.22
16.45/0.86,/20.18

14.47/0.89/24 4
19.54/0.84/12.94
14.91/0.81/13.51
21.35/0.94/14.72
22.75/0.94/11.39
16.17/0.86,/20.22
14.91/0.86/20.92
21.89/0.92/13.65
18.22/0.89/15.29
22.66,/0.89/10.71
16.17/0.89/18.42
15.89/0.9/20.79

Average

15.49/0.82/17.84

16.31/0.84/18.16

13.23/0.72/25.95

14.85/0.78/19.27

18.24/0.89/16.41

Table: Quantitative comparison of PSNR, SSIM, CIEDE2000 (lower
better) values on Fattal dataset




O
Failure Cases

(b) Berman et al.[3] (c) Li et al.[5]

(e) Transmittance (f) Airlight

Figure: Failure on canon7 image
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