Image Dehazing by Joint Estimation of Transmittance and Airlight using Bi-Directional Consistency Loss Minimized FCN

Ranjan Mondal, Sanchayan Santra, Bhabatosh Chanda

Electronics and Communication Sciences Unit Indian Statistical Institute, Kolkata, India

Presented at: CVPR Workshop: NTIRE 2018, Salt Lake City, Utah

Image Dehazing

Figure: Hazy image and its dehazed version

Imaging Equation

Image formation in haze is modeled as follows [1]

$$I(\mathbf{x}) = J(\mathbf{x})t(\mathbf{x}) + (1 - t(\mathbf{x}))A$$
(1)

Common Assumptions,

- ► For RGB image I(x), J(x) and A are 3 × 1 vectors and t(x) is a scalar, assuming it to be constant across color channels.
- The environmental illumination (A) is constant in the whole scene.

Imaging Equation

Assumption,

- ► For RGB image I(x), J(x) and A are 3x1 vectors and t(x) is a scalar, assuming it to be constant across color channels.
- ► The environmental illumination (A) is constant in the whole scene.

This constant environmental assumption is true only when the sky is overcast[1].

Relaxed Imaging Equation

$$I(\mathbf{x}) = J(\mathbf{x})t(\mathbf{x}) + (1 - t(\mathbf{x}))A,$$
(2)

is changed to

$$I(\mathbf{x}) = J(\mathbf{x})t(\mathbf{x}) + (1 - t(\mathbf{x}))A(\mathbf{x}).$$
(3)

Where, A is changed to $A(\mathbf{x})$ to account for the space-variant illumination within an image.

We don't use relaxed equation in its original form. Instead we use the following,

$$I(\mathbf{x}) = J(\mathbf{x})t(\mathbf{x}) + (1 - t(\mathbf{x}))A(\mathbf{x}),$$
(4)
= $J(\mathbf{x})t(\mathbf{x}) + K(\mathbf{x}).$ (5)

Threfore, given an image we try to estimate $t(\mathbf{x})$ and $K(\mathbf{x})$ using a CNN.

Challenges

- Interdependence of $t(\mathbf{x})$ and $K(\mathbf{x})$.
- The NTIRE Dehazing dataset contains only Hazy image and its corresponding clear image.
- The input image can be of various sizes.

Challenges

- Interdependence of $t(\mathbf{x})$ and $K(\mathbf{x})$.
- The NTIRE Dehazing dataset contains only Hazy image and its corresponding clear image.
- The input image can be of various sizes.

Proposed way,

• Joint estimation of $t(\mathbf{x})$ and $K(\mathbf{x})$.

CNN Architecture

Figure: Architecture of our proposed CNN

Input: $I(\mathbf{x}) (M \times N \times 3)$ and Output: $t(\mathbf{x}) (M \times N)$ and $K(\mathbf{x}) (M \times N \times 3)$.

CNN Architecture

Figure: Architecture of our proposed CNN: $t(\mathbf{x})$ estimation path

CNN Architecture

Figure: Architecture of our proposed CNN: $K(\mathbf{x})$ estimation path

Challanges

- Interdependence of $t(\mathbf{x})$ and $K(\mathbf{x})$.
- The NTIRE Dehazing dataset contains only Hazy image and its corresponding clear image.
- The input image can be of various sizes.

Proposed way,

Bi-directional Consistency Loss

Bi-directional Consistency Loss

$$L = \frac{1}{N} \sum_{\mathbf{x}} \left(L_1(\mathbf{x}) + L_2(\mathbf{x}) \right)$$
(6)

Forward Loss:
$$L_1(\mathbf{x}) = |I(\mathbf{x}) - J(\mathbf{x})t'(\mathbf{x}) - K'(\mathbf{x})|$$
 (7)

Backward Loss:
$$L_2(\mathbf{x}) = \left| J(\mathbf{x}) - \frac{I(\mathbf{x}) - K'(\mathbf{x})}{\max\{t'(\mathbf{x}), \epsilon\}} \right|.$$
 (8)

- ► Works with only input image (I(x)) and ground truth clean image (J(x)).
- ► This also avoids the case when a small error in t(x) deviates the dehazed output quite a bit.
- This also ensures the network converges to the correct solution only.

Challanges

- Interdependence of $t(\mathbf{x})$ and $K(\mathbf{x})$.
- The NTIRE Dehazing dataset contains only Hazy image and its corresponding clear image.
- The input image can be of various sizes.

Proposed way,

Multi-level approach.

Multi-level Training

The network needs to be trained so that it handles scale variation. So, training data generation we do the following.

- Extract overlapping patches from the both clear and corresponding hazy images.
- ▶ In the first level, we take patches of size $P \times P$, where $P = \min\{H, W\}$ for a $H \times W$ image.
- In the second level, we extract patches of size $\frac{P}{2} \times \frac{P}{2}$.
- In the third level patch size becomes $\frac{P}{4} \times \frac{P}{4}$.
- ► This halving process is repeated until the patch size falls below 128 × 128.

All the extracted patches are resized to 128×128 before they are used for training.

Multi-level estimation

Figure: Step1: Down-scaling

Multi-level estimation of $t(\mathbf{x})$ and $K(\mathbf{x})$

This is done for patch sizes $P \times P = 256 \times 256,\,384 \times 384$ and $512 \times 512.$

Aggregation of patches

We have patches with three different sizes (256×256 , 384×384 and 512×512). We aggregate similar sized patches.

So, we will get three t and three K maps of same size by using three different sized patches.

Aggregation of $t(\mathbf{x})$ and $K(\mathbf{x})$

We have obtained three t and three K maps. We need to aggregate them to form single transmittance and airlight map in the following way,

$$t(\mathbf{x}) = \frac{\sum_{i=1}^{l} w_i^{(t)} t_i(\mathbf{x})}{\sum_{i=1}^{l} w_i^{(t)}},$$
(9)

$$K(\mathbf{x}) = \frac{\sum_{i=1}^{l} w_i^{(K)} K_i(\mathbf{x})}{\sum_{i=1}^{l} w_i^{(K)}}.$$
 (10)

Here $t_i(\mathbf{x})$ and $K_i(\mathbf{x})$ denote the estimates we have obtained at level *i* and *l* denotes the number of levels we operate on. Here, we have taken all the weights to be 1.

Dehazed Output with the aggregated $t(\mathbf{x})$ and $K(\mathbf{x})$

We have used Guided Filter[2] to refine (smooth) them.

After Guided Filter

Results

(a) Hazy Image

(d) Ren *et al.*[6] (e) Ours (f) Ground Truth Figure: Comparison on image *39* of NTIRE Hazy validation dataset

Results

-	Image	Berman et al.[3]	Cai et al.[4]	Ren <i>et al.</i> [6]	Ours
Indoor	26	12.42/0.65/20.15	10.17/0.69/24.64	11.02/0.72/22.36	15.71/0.78/13.86
	27	14.8/0.66/18.03	14.51/0.67/17.74	17.61/0.77/12.31	21.94/0.77/8.25
	28	13.3/0.62/19.24	13.39/0.72/17.7	13.11/0.72/17.06	16.15/0.73/13.71
	29	14.67/0.67/15.73	11.91/0.55/20.78	17.6/0.84/11.43	21.88/0.83/9.33
	30	13.93/0.61/19.09	15.53/0.71/15.16	16.79/0.73/14.21	20.66/0.73/12.19
Outdoor	36	16.92/0.58/14.43	16.59/0.64/13.17	19.46/0.68/11.84	23.23/0.68/7.6
	37	14.99/0.52/15.14	15.76/0.57/15.36	17.73/0.6/13.27	21.4/0.63/8.53
	38	15.55/0.64/16.92	13.25/0.6/21.85	16.21/0.66/19.02	22.4/0.69/8.52
	39	17.65/0.62/16.43	12.78/0.57/20.71	15.75/0.61/16.74	19.95/0.64/10.84
	40	17.04/0.61/15.06	16.53/0.67/11.62	18.67/0.7/11.96	22.2/0.71/7.85
	Average	15.13/0.62/17.02	14.04/0.64/17.87	16.39/0.7/15.02	20.55/0.72/10.07

Table: Quantitative comparison of PSNR, SSIM, CIEDE2000 (lower better) values on NTIRE hazy dataset

Results

-	D ([0]	6 1 4 4 [4]	1.1. / [[]]	D : /[[[]]	
Image	Berman et al.[3]	Cai et al.[4]	Li et al.[5]	Ren et al.[6]	Ours
church	15.69/0.88/16.91	14.64/0.82/20.45	9.44/0.61/34.64	14.18/0.85/20.26	14.47/0.89/24.4
couch	17.28/0.86/14.18	16.71/0.82/14.34	16.79/0.82/17.33	18.02/ 0.87 /1 2.92	19.54/0.84/12.94
dolls	15.71/0.8/15.74	16.26/0.81/12.43	17.24/0.82/10.88	16.95/0.83/12.38	14.91/0.81/13.51
flower1	12.15/0.71/20.99	19.81/0.94/16.72	12.21/0.79/29.42	9.08/0.42/24.65	21.35/0.94/14.72
flower2	11.86/0.67/21.17	19.44/0.91/15.37	13.13/0.78/25.27	10.82/0.59/22.45	22.75/0.94/11.39
lawn1	14.78/0.83/17.93	13.8/0.81/23.01	11.33/0.67/31.74	14.38/0.8/21.0	16.17/0.86/20.22
lawn2	15.32/0.85/17.81	13.61/0.81/22.47	10.98/0.66/31.7	13.3/0.76/22.27	14.91/0.86/20.92
mansion	17.34/0.87/15.84	17.39/0.84/17.42	14.23/0.69/24.01	17.7/0.87/17.53	21.89/0.92/13.65
moebius	14.59/0.83/22.4	19.18/0.94/16.38	13.21/0.76/27.61	16.38/0.89/19.86	18.22/0.89/15.29
raindeer	16.6/0.8/15.28	17.87/0.84/13.73	16.54/0.79/18.5	16.83/0.8/15.49	22.66/0.89/10.71
road1	16.33/0.87/19.06	13.73/0.79/22.2	11.75/0.65/29.32	14.13/0.82/22.22	16.17/0.89/18.42
road2	18.23/0.89/16.83	13.22/0.77/23.43	11.95/0.61/30.96	16.45/0.86/20.18	15.89/0.9/20.79
Average	15.49/0.82/17.84	16.31/0.84/18.16	13.23/0.72/25.95	14.85/0.78/19.27	18.24/0.89/16.41

Table: Quantitative comparison of PSNR, SSIM, CIEDE2000 (lower better) values on Fattal dataset

Failure Cases

References I

S. G. Narasimhan and S. K. Nayar.

Vision and the Atmosphere.

International Journal of Computer Vision, 48(3):233-254, July 2002

- K. He, J. Sun, and X. Tang. Guided Image Filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6):1397–1409, June 2013.
 - D. Berman, T. Treibitz, and S. Avidan. Non-local Image Dehazing.

In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1674–1682, June 2016.

References II

B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao. DehazeNet: An End-to-End System for Single Image Haze Removal.

IEEE Transactions on Image Processing, 25(11):5187–5198, Nov. 2016.

- B. Li, X. Peng, Z. Wang, J. Xu, and D. Feng.
 AOD-Net: All-In-One Dehazing Network.
 In *The IEEE International Conference on Computer Vision* (*ICCV*), pages 4770–4778, Oct 2017.
- W. Ren, S. Liu, H. Zhang, J. Pan, X. Cao, and M.-H. Yang. Single Image Dehazing via Multi-scale Convolutional Neural Networks.

In *European Conference on Computer Vision*, pages 154–169. Springer, 2016.

Thank You

