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Image Dehazing

Figure: Hazy image and its dehazed version



Imaging Equation

Image formation in haze is modeled as follows [1]

I(x) = J(x)t(x) + (1− t(x))A (1)

Common Assumptions,

I For RGB image I(x), J(x) and A are 3× 1 vectors and t(x) is
a scalar, assuming it to be constant across color channels.

I The environmental illumination (A) is constant in the whole
scene.



Imaging Equation

Assumption,

I For RGB image I(x), J(x) and A are 3x1 vectors and t(x) is a
scalar, assuming it to be constant across color channels.

I The environmental illumination (A) is constant in the whole
scene.

This constant environmental assumption is true only when the sky
is overcast[1].



Relaxed Imaging Equation

I(x) = J(x)t(x) + (1− t(x))A, (2)

is changed to

I(x) = J(x)t(x) + (1− t(x))A(x). (3)

Where, A is changed to A(x) to account for the space-variant
illumination within an image.



Relaxed Imaging Equation

We don’t use relaxed equation in its original form. Instead we use
the following,

I(x) = J(x)t(x) + (1− t(x))A(x), (4)

= J(x)t(x) +K(x). (5)

Threfore, given an image we try to estimate t(x) and K(x) using a
CNN.



Challenges

I Interdependence of t(x) and K(x).

I The NTIRE Dehazing dataset contains only Hazy image and
its corresponding clear image.

I The input image can be of various sizes.



Challenges

I Interdependence of t(x) and K(x).

I The NTIRE Dehazing dataset contains only Hazy image and
its corresponding clear image.

I The input image can be of various sizes.

Proposed way,

I Joint estimation of t(x) and K(x).
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Figure: Architecture of our proposed CNN

Input: I(x) (M×N×3) and Output: t(x) (M×N)and K(x)
(M×N×3).
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Figure: Architecture of our proposed CNN: t(x) estimation path
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Figure: Architecture of our proposed CNN: K(x) estimation path



Challanges

I Interdependence of t(x) and K(x).

I The NTIRE Dehazing dataset contains only Hazy image and
its corresponding clear image.

I The input image can be of various sizes.

Proposed way,

I Bi-directional Consistency Loss



Bi-directional Consistency Loss

L =
1

N

∑
x

(
L1(x) + L2(x)

)
(6)

Forward Loss: L1(x) = |I(x)− J(x)t′(x)−K ′(x)| (7)

Backward Loss: L2(x) =

∣∣∣∣J(x)− I(x)−K ′(x)

max{t′(x), ε}

∣∣∣∣ . (8)

I Works with only input image (I(x)) and ground truth clean
image (J(x)).

I This also avoids the case when a small error in t(x) deviates
the dehazed output quite a bit.

I This also ensures the network converges to the correct
solution only.



Challanges

I Interdependence of t(x) and K(x).

I The NTIRE Dehazing dataset contains only Hazy image and
its corresponding clear image.

I The input image can be of various sizes.

Proposed way,

I Multi-level approach.



Multi-level Training

The network needs to be trained so that it handles scale variation.
So, training data generation we do the following.

I Extract overlapping patches from the both clear and
corresponding hazy images.

I In the first level, we take patches of size P × P , where
P = min{H,W} for a H ×W image.

I In the second level, we extract patches of size P
2 × P

2 .

I In the third level patch size becomes P
4 × P

4 .

I This halving process is repeated until the patch size falls
below 128× 128.

All the extracted patches are resized to 128× 128 before they are
used for training.



Multi-level estimation
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Figure: Step1: Down-scaling



Multi-level estimation of t(x) and K(x)
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This is done for patch sizes P×P = 256× 256, 384× 384 and
512× 512.



Aggregation of patches

We have patches with three different sizes (256× 256, 384× 384
and 512× 512). We aggregate similar sized patches.

t-patches K-patches

H1xW1

P
PAggregation

by averaging

P
PAggregation

by averaging

H1xW1x3

So, we will get three t and three K maps of same size by using
three different sized patches.



Aggregation of t(x) and K(x)

We have obtained three t and three K maps. We need to
aggregate them to form single transmittance and airlight map in
the following way,

t(x) =

∑l
i=1w

(t)
i ti(x)∑l

i=1w
(t)
i

, (9)

K(x) =

∑l
i=1w

(K)
i Ki(x)∑l

i=1w
(K)
i

. (10)

Here ti(x) and Ki(x) denote the estimates we have obtained at
level i and l denotes the number of levels we operate on. Here, we
have taken all the weights to be 1.



Dehazed Output with the aggregated t(x) and K(x)

We have used Guided Filter[2] to refine (smooth) them.



After Guided Filter



Results

(a) Hazy Image (b) Berman et al.[3] (c) Cai et al.[4]

(d) Ren et al.[6] (e) Ours (f) Ground Truth

Figure: Comparison on image 39 of NTIRE Hazy validation dataset



Results

Image Berman et al.[3] Cai et al.[4] Ren et al.[6] Ours

Indoor

26 12.42/0.65/20.15 10.17/0.69/24.64 11.02/0.72/22.36 15.71/0.78/13.86
27 14.8/0.66/18.03 14.51/0.67/17.74 17.61/0.77/12.31 21.94/0.77/8.25
28 13.3/0.62/19.24 13.39/0.72/17.7 13.11/0.72/17.06 16.15/0.73/13.71
29 14.67/0.67/15.73 11.91/0.55/20.78 17.6/0.84/11.43 21.88/0.83/9.33
30 13.93/0.61/19.09 15.53/0.71/15.16 16.79/0.73/14.21 20.66/0.73/12.19

Outdoor

36 16.92/0.58/14.43 16.59/0.64/13.17 19.46/0.68/11.84 23.23/0.68/7.6
37 14.99/0.52/15.14 15.76/0.57/15.36 17.73/0.6/13.27 21.4/0.63/8.53
38 15.55/0.64/16.92 13.25/0.6/21.85 16.21/0.66/19.02 22.4/0.69/8.52
39 17.65/0.62/16.43 12.78/0.57/20.71 15.75/0.61/16.74 19.95/0.64/10.84
40 17.04/0.61/15.06 16.53/0.67/11.62 18.67/0.7/11.96 22.2/0.71/7.85

Average 15.13/0.62/17.02 14.04/0.64/17.87 16.39/0.7/15.02 20.55/0.72/10.07

Table: Quantitative comparison of PSNR, SSIM, CIEDE2000 (lower
better) values on NTIRE hazy dataset



Results

Image Berman et al.[3] Cai et al.[4] Li et al.[5] Ren et al.[6] Ours
church 15.69/0.88/16.91 14.64/0.82/20.45 9.44/0.61/34.64 14.18/0.85/20.26 14.47/0.89/24.4
couch 17.28/0.86/14.18 16.71/0.82/14.34 16.79/0.82/17.33 18.02/0.87/12.92 19.54/0.84/12.94
dolls 15.71/0.8/15.74 16.26/0.81/12.43 17.24/0.82/10.88 16.95/0.83/12.38 14.91/0.81/13.51
flower1 12.15/0.71/20.99 19.81/0.94/16.72 12.21/0.79/29.42 9.08/0.42/24.65 21.35/0.94/14.72
flower2 11.86/0.67/21.17 19.44/0.91/15.37 13.13/0.78/25.27 10.82/0.59/22.45 22.75/0.94/11.39
lawn1 14.78/0.83/17.93 13.8/0.81/23.01 11.33/0.67/31.74 14.38/0.8/21.0 16.17/0.86/20.22
lawn2 15.32/0.85/17.81 13.61/0.81/22.47 10.98/0.66/31.7 13.3/0.76/22.27 14.91/0.86/20.92
mansion 17.34/0.87/15.84 17.39/0.84/17.42 14.23/0.69/24.01 17.7/0.87/17.53 21.89/0.92/13.65
moebius 14.59/0.83/22.4 19.18/0.94/16.38 13.21/0.76/27.61 16.38/0.89/19.86 18.22/0.89/15.29
raindeer 16.6/0.8/15.28 17.87/0.84/13.73 16.54/0.79/18.5 16.83/0.8/15.49 22.66/0.89/10.71
road1 16.33/0.87/19.06 13.73/0.79/22.2 11.75/0.65/29.32 14.13/0.82/22.22 16.17/0.89/18.42
road2 18.23/0.89/16.83 13.22/0.77/23.43 11.95/0.61/30.96 16.45/0.86/20.18 15.89/0.9/20.79
Average 15.49/0.82/17.84 16.31/0.84/18.16 13.23/0.72/25.95 14.85/0.78/19.27 18.24/0.89/16.41

Table: Quantitative comparison of PSNR, SSIM, CIEDE2000 (lower
better) values on Fattal dataset



Failure Cases

(a) Input (b) Berman et al.[3] (c) Li et al.[5]

(d) Our (e) Transmittance (f) Airlight

Figure: Failure on canon7 image
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