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Learning a Patch Quality Comparator for Single
Image Dehazing

Sanchayan Santra, Ranjan Mondal, and Bhabatosh Chanda

Abstract—In bad weather conditions like fog and haze, the par-
ticles present in the atmosphere scatter incident light in different
directions. As a result, image taken under these conditions suffers
from reduced visibility, lack of contrast, as a result, it appears
colorless. Image dehazing method tries to recover a haze-free
portrayal of the given hazy image. In this paper we propose a
method that dehazes a given image by comparing various output
patches with the original hazy version and choosing the best one.
The comparison is performed by our proposed dehazed patch
quality comparator based on Convolutional Neural Network
(CNN). To select the best dehazed patch we employ binary search.
Quantitative and qualitative evaluations show that our method
achieves good results in most of the cases, and are, on an average,
comparable with state-of-the-art methods.

Index Terms—Image Restoration, Dehazing, Defogging, Visi-
bility Enhancement

I. INTRODUCTION

PRESENCE of fog and haze in the environment greatly

reduces the visibility of the scene. Degradation of image

of the scene is caused by the scattering of light by the particles

present in the atmosphere. These particles attenuate the light

reflected off an object, and thereby reduce its intensity before

reaching the observer. The environmental illumination also

gets scattered by these particles resulting in a translucent veil

of light. Due to these two phenomena, the visibility of a

scene is greatly reduced under haze condition. Image dehazing

methods try to alleviate these problems by estimating a haze-

free version of the given hazy image (Fig.1). These methods

can play a crucial role as a pre-processing step for many

computer vision applications, since most of them assume clear

haze-free scene is provided as input.

The most challenging aspect of the problem is its depth

dependent degradation, that means with increasing depth, the

amount of degradation increases. As estimating depth from a

single image is an ill-posed problem, a few researchers have

tried to dehaze and image from the point of view of contrast

restoration, assuming haze is uniform in the image [1], [2].

These methods work without taking into account how images

form under haze. For this reason, these methods can’t handle

color changes due to haze. A separate class of methods exists

that tries to solve this problem by modeling how images form

under haze. These methods estimate the model parameters,
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Fig. 1. Hazy image and its dehazed version obtained by our method

and then try to obtain an image without the added haze. Due

to the depth dependent nature of the degradation, the model

parameters also depend on the depth. So, to estimate depth

earlier methods took the help of multiple images taken under

different conditions [3]–[5]. Taking a different route, some

methods tried to dehaze an image when depth map of the scene

is known [6] or can be obtained before dehazing [7], [8]. Only

more recent methods have focused on dehazing with only a

single image as input. These methods achieve this by making

stronger assumptions about the input and/or the output images.

Tan [9] made an observation that haze-free images have more

contrast than the hazy ones. So, in his method he tried to

obtain a dehazed image by maximizing the local contrast.

Although, the resulting images attain more visibility, they tend

to contain saturated colors and look unnatural. Fattal [10]

tried to estimate scene transmittance with the assumption that

surface shading and scene transmittance are locally statistically

uncorrelated. This method fails in case of fog and dense haze

when surface shading and scene transmittance does not vary

sufficiently. He et al. [11] have proposed dark channel prior

to estimate scene transmittance. Dark channel prior is based

on the observation that in haze-free images, in most of the

local regions not covering the sky, pixels often have low

intensity in at least one color channel. In case of hazy images

the intensity of those color channels is mainly contributed

by the airlight. Kim et al. [12] have also used the idea of

contrast maximization but with one added penalty for pixel

values going out of valid RGB range in the dehazed output.

Although this works well, due to the nature of the penalty, they

have employed linear search to find the optimum transmittance
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value. Tang et al. [13] have tried to solve the problem in a

learning framework. They took existing haze-aware features

like dark channel, local max contrast, local max saturation,

hue disparity to regress the transmittance in image patches.

The training data for the regressor was generated by taking

patches out of haze-free images. Fattal [14] adopted the idea

of color line to image dehazing. In hazy condition, the local

color line gets shifted in the direction of airlight. From this

shift the transmittance is estimated. Zhu et al. [15] proposed

color attenuation prior to model the scene depth. This prior is

based on the observation that difference between the brightness

and saturation can approximately represent the concentration

of haze. So, they have modeled depth as a linear function

of brightness and saturation. The parameters of this function

is learned in a supervised fashion. With the recovered depth

information they dehaze the given image. Cai et al. [16] also

proposed a learning based framework to train a regressor to

predict transmittance from patches. Instead of using hand-

crafted features, they apply Convolutional Neural Network

(CNN) to learn the features and predict the transmittance.

Ren et al. [17] have also employed CNN to estimate scene

transmittance. But rather than working at patch level, they

estimate the transmittance map for the whole image. To be

able to properly estimate the transmittance in the whole image

they have used multi-scale CNN to capture both coarse and

fine scale structures. The method proposed by Berman et al.

[18] also works with whole images rather than patches. This is

based on the observation that the colors of a haze-free image

can be approximated by a few hundred colors and they form

tight clusters in the RGB space. In case of haze, these cluster

form lines (termed as haze-lines). These haze-lines are used

to estimate the transmittance at different pixels. The above

mentioned methods work with the assumption that the input

images are taken in daytime. However, there are some methods

that deal specifically with night time images [19]–[22] and also

methods that work for both day and night time images [23].

For an overview of the methods the reader may refer to the

survey by Li et al. [24].

In this paper we have proposed a daytime image dehazing

method that finds the transmittance at each patch (and subse-

quently at each pixel) by comparing the dehazed version of

the patch with the hazy one. This is motivated by the fact

that comparing two patches and saying which one has more

haze is easier than saying the haze level of a given patch.

Now, this comparison is performed by our proposed module

called patch quality comparator. This comparator, when given

two patches as input, can indicate which one is of better

quality in terms of haziness. We build the comparator in such

a way, that the natural looking patches (e.g., without saturated

colors, noise etc.) and the patches with less haze are declared

as the better one. So, with the help of this comparator, we

search for a transmittance value that can dehaze the given

hazy patch and at the same time does not degrade the dehazed

output by overdoing. Our main contribution is designing this

comparator that efficiently guides this search and exploiting

this comparator to solve single image dehazing problem.

The rest of the paper is organized as follows. Section II

describes the haze imaging model and also the assumptions

made to solve the problem. Section III gives the idea behind

the proposed approach. Section IV describes in detail the

steps to dehaze a given image. In section V we state the

experimental settings, and the obtained results are compared

with that of the state-of-the-art methods in section VI. Finally,

section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

Light propagating through a scattering medium undergoes

certain changes. Transformation of intensity is one of them.

This change in intensity is modeled using the following

equation [25] [26]

I(x) = J(x)t(x) + (1− t(x))A, (1)

t(x) = e−βd(x) (2)

where I(x) is the observed intensity, J(x) is the intensity

of light coming from the scene objects and before getting

scattered, t(x) is the scene transmittance denoting the amount

of light that reaches the observer after getting scattered and

A denotes the global environmental illumination. The scene

transmittance t(x) depends on the depth at position x and the

scattering coefficient (β) (Eq. 2). This scattering coefficient

depends on the size of the scattering particle and the wave-

length of the light. So, in case of RGB images if we use this

model of image formation, then for each color channel t(x)
needs to be different. But, Nayar and Narasimhan [3] have

shown that in case of fog and haze, the transmittance remains

almost the same across the visible spectrum. Therefore, we

assume t(x) to be constant across the channels. So, for RGB

images the Eq. (1) is treated as a vector equation, with I(x),
J(x), and A as 3 × 1 vector and t(x) as a scalar. Now,

given an image I(x) the image dehazing methods try to

recover J(x) at each pixel. The methods usually compute

the value of ‘A’ for the whole image and estimate t(x) at

each pixel. Then the imaging model is inverted to compute

J(x). Since the mapping J(x) → I(x) is not one-to-one,

as t(x) varies from pixel to pixel, the estimation of J(x)
independently at each pixel x can be inconclusive. The value

of I(x) could be due to only J(x) when t(x) = 1 or due

to only ‘A’ when t(x) = 0. This confusion exists even if

we know ‘A’ for the given image. To surmount this hurdle

a simple assumption is adopted which is common in the

literature [13], [14], [16]: within a small patch of the image

the depth of the scene and consequently, the transmittance t
is constant. This assumption is valid because a patch of the

image corresponds to a small part of a single surface in the

scene, which may be approximated by a relatively smooth

surface except at the places where the patch is on the boundary

between two surfaces. Therefore the following equation is

utilized to estimate transmittance within a patch

I(x) = J(x)t+ (1− t)A (3)

But, if the patch we consider is very smooth, i.e., I(x) =
const for all x and contrast is nil, the effect of haze is neither

apparent nor measurable. So, we may argue that using Eq.

(3) is not advantageous in two cases: very smooth patches

and patches with strong depth discontinuity. Therefore, when



IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XX, NO. X, AUGUST XXXX 3

Haze added with t=0.65 
and A=[1, 1, 1]T

Dehazed with

t = 0.8 t = 0.7 t = 0.4 t = 0.2

Fig. 2. Haze is added in a patch. This haze patch is dehazed with t values
less than 0.65 and greater than 0.65.

0.10.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
t-values

Fig. 3. Same haze patch is dehazed with different t’s. At t = 1 the dehazed
patch is same as the original haze patch.

we process patches for estimating the parameters, we discard

these two kinds of patches. The remaining ones are considered

for estimating t. These estimates are then aggregated and

regularized to get t(x) for the whole image. These parameters

are then used to invert the imaging equation (1). Here we

concentrate only on the t(x) estimation part; A is computed

as it described by He et al. [11].

III. SOLUTION APPROACH

Our approach is built on the principle that for a given hazy

patch there is a t = t′ that properly dehazes this patch.

Dehazing this patch with t > t′ retains some haze in the

dehazed output, and on the other hand, using t < t′ produces

over contrasted, bad looking, unnatural output. So, dehazing

a given patch with t = t′, we get the actual J(x) by the

following equation

Jc
t′(x) = A−

A− Ic(x)

t′
. (4)

Where c ∈ {R, G, B} is one of the color channels. If the same

patch is dehazed with t (6= t′), we can write

Jc
t (x) = A−

A− Ic(x)

t
. (5)

From these two equation the following can be written

∆(x) = Jc
t (x)− Jc

t′(x) = (A− Ic(x))
( t− t′

tt′

)

. (6)

So, depending on the value of ∆(x) we can say whether the

dehazed output Jt(x) is more than the actual J(x) or less.

Now this equation has two terms. The first term will always be

positive. As, A is the environmental illumination, everything in

the scene is illuminated by it. So, the value of I(x) (= r(x)A,

where r(x) ∈ [0, 1] denotes the reflectance property of the

scene object) can’t be more than A. Therefore the value of

∆(x) depends only on the relation between t and t′. If t < t′

then ∆(x) is negative. That means the dehazed output is less

than the actual one, therefore darker. On the other hand, if

t > t′ then the dehazed output is more than actual one: it can

be further cleaned. This principle is also illustrated using an

example as shown in Fig.2. We take a patch from an unhazed

clear image. From this patch we generate a hazy patch using

Eq. (3) with t = 0.65 and A = [1, 1, 1]T . This generated hazy

patch is then dehazed using the same A but with different

t’s (e.g., 0.8, 0.7, 0.4, and 0.2). It is seen from the figure

that dehazing the hazy patch with t less than the ideal (0.65)

produces bad output and the patches dehazed with t greater

than 0.65 are better than the original hazy patch. Some haze

is still present in these hazy patches and it can be further

cleaned. We say these are good dehazed patches. Now if we

dehaze a given patch with different values of t, we get some

good dehazed patches and some bad dehazed patches (Fig.3).

If we arrange these dehazed patches, say, in ascending order

based on the value of t that is used to obtain these patches,

then starting from t = 1 down to t = t′, we get good dehazed

patches, and bad dehazed patches for the remaining values

of t. Thus the transition from good to bad dehazed patches

occurs at t = t′ if we vary the value of t between 0 and 1. We

use this fact to obtain the appropriate value of t for any given

hazy patch. However, note that to be able to find the point of

transition, we must be able to tell, without the knowledge of

desired value of t, i.e. t′, whether a dehazed patch is a good

dehazed patch or a bad one. For this purpose we build the

patch quality comparator.

A. Patch Quality Comparator

The patch quality comparator we propose here compares

two patches, say, a given patch and its dehazed version, and

reports whether the dehazed patch is good or bad. If we

know beforehand whether a dehazed patch is good or bad, we

can use this information to train a classifier to perform this

comparison. Now instead of using some handcrafted features

and employing a two-class (good and bad) classifier to do

this task, we use a CNN to learn the features and do the

classification simultaneously. The proposed network takes two

patches as input and produces two outputs to denote which one

of the input is better. The ideal output is [1, 0]T if the first input

is better and [0, 1]T otherwise. Here the assumption is that the

two patches differ only in the amount of haze, and represent

the same part of the same scene. The basic structure of the

network is inspired from the common CNN based classifiers

i.e. convolutional layers for feature extraction followed by

dense layers for classification based on the extracted features.

Our network is designed in the same way. As our network

takes two patches as input, we process both of them by the
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Input:
RGB patch 10x10

 

Featute maps: 64@8x8
Kernel size: 3x3 
Activation: Tanh

Featute maps: 16@4x4
Kernel size: 3x3 
Activation: Tanh 

Featute maps: 32@6x6
Kernel size: 3x3 
Activation: Tanh

  
Output

 

Merge: 
Feature maps: 32@4x4

Flatten:512

Dense: 8
Activation: Tanh

Dense: 2
Activation: Softmax

Input1

Input2

Output1

Output2

Dense: 16
Activation: Tanh

Fig. 4. Architecture of our Patch Quality Comparator

same set of convolutional layers so as to extract the same

features from each of them. Another advantage of extracting

the same set of features from both the inputs is that, this

reduces the dependence of the network on the ordering of

the training data. Now, the usual classification networks stack

around 8 to 19 layers to classify an image. But in our case,

we are processing small image patches (10 × 10). Therefore,

we need only small number of convolutional layers to extract

features. On the other hand, we have to take small number of

dense layers to avoid overfitting of the classifier. We have

used tanh function as the non-linear activation throughout

the network except the last layer. In the last layer we use

softmax activation function [27, p. 198] as we are training the

network as a classifier. The use of tanh results in relatively

large gradients (during backpropagation) leading to speed up

of the optimization process. Moreover, the vanishing gradients

problem associated with tanh is not likely to occur as the

network is not very deep.

We train the comparator distinguish the haziness of patches

making sure the following conditions are met:

1) The haze patch is better than a bad dehazed patch.

2) A good dehazed patch is better than the haze patch.

Using this comparator we find at what value of t the transition

from good dehazed patch to bad dehazed patch occurs, by

repeatedly dehazing a given patch using different values of t.
As we have already mentioned, this point of transition gives

the desired value of t for this patch. Now, Instead of arbitrary

search for this point, we employ binary search to do this

computation efficiently.

IV. IMPLEMENTATION OF THE METHOD

The proposed dehazing method has the following 4 main

steps:

1) Computation of atmospheric light A.

2) Binary search for the t for each patch, based on the

response of the comparator.

3) Aggregation and Interpolation of the estimated t.
4) Haze-free image recovery.

When a hazy image is given as input, first atmospheric light

A is computed. Then from the input image, we take patches

of size ω × ω with 50% overlap (both horizontally and

vertically) and find t in each patch using the patch quality

comparator, following binary search. Because of the overlap,

a pixel receives more than one estimate of t. We take the

average of these estimates while determining the value of t at

that pixel. Now, it is quite likely that at some pixels the t is

not estimated as they belong to either very smooth patches or

to patches with strong edges, which are discarded from being

processed as stated earlier (see Section II). At those positions

the values of t are interpolated. After this step we obtain t(x)
at every pixel in the image. Finally, the dehazed image is

obtained by dehazing the image using Eq. (1) with this t(x)
and already computed A. Details of each step is provided in

the following subsections.

A. Computation of Environmental Illumination

The environmental illumination ‘A’ is computed as it is

described by He et. al. [11]. We describe it here briefly for

the sake of completeness. Environmental illumination can be

estimated from the color of the most haze opaque region, i.e.,

where value of the t is least or, in other words, depth is large.

This region is detected with the help of the dark channel of

the hazy image. Dark channel of an image I is given by

D(x) = min
y∈Ω(x)

(

min
c∈{R,G,B}

Ic(y)
)

, (7)

where Ic is a color channel of I and Ω(x) is a local patch

centered at x. As dark channel approximates denseness of

haze, the most haze opaque region selected by picking the top

0.1% brightest pixels in the dark channel. Within this region,

the pixel with highest intensity in the input image is selected

as the environmental illumination.

B. Transmittance finding using binary search

In this step we estimate t from a given patch. We find the

ideal t (= t′) for a hazy patch using patch quality comparator

following binary search strategy. The search is guided by the

principle described in the Section III, that is, we get a good

dehazed patch when t > t′, and a bad dehazed patch when

t < t′. We need to find the point of transition from good

dehazed patch to bad dehazed one, and this good/bad decision

is taken by the patch quality comparator.

We begin the process with te = 1 and tb = 0. We compute

tm = (tb + te)/2. Then the input patch is dehazed with the

value tm, and the input hazy patch and the dehazed patch is

compared. If the dehazed patch is bad then we can say that

tm < t′. Therefore t′ lies in the range (tm, te). So, we set tb to

tm. On the other hand, if the obtained dehazed patch is good,

then tm > t′. So, we set te to tm as t′ lies in the range (tb, tm).

This process is repeated (i.e. computing tm, dehazing with

new tm, comparing new dehazed patch with the hazy one, and

finally updating te or tb) until (te−tb) becomes small enough.

When the search stops, tm = (tb + te)/2 is declared as the

desired t′ for this patch. The above mentioned steps are written

in algorithmic form in Algorithm 1. Here function dehaze()
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dehazes a given patch with the provided t and A using Eq.

(3). The haze_patch_comparator() is the function for

Patch Quality Comparator described in Section III-A. It takes

two patches as input and produces output depicting which one

of the input patches is better.

Algorithm 1 t searching algorithm

Input: Ip, A, θt
Output: tm

1: te ← 1
2: tb ← 0
3: while (te − tb) > θt and te > tb do

4: tm ← (te + tb)/2
5: Id = dehaze(Ip, tm, A)

6: (a, b) = haze_patch_comparator(Ip, Id)

7: if a > b then {dehazed patch is bad}
8: tb ← tm
9: else {dehazed patch is good}

10: te ← tm
11: end if

12: end while

13: tm ← (te + tb)/2

C. t(x) aggregation and interpolation

Thus the transmittance parameter t is estimated from the

patches as described in the previous step. If we consider

overlapping patches, a pixel is likely to receive more than one

estimate of t. These values are combined to obtain a single

value of t at each pixel. Since during processing we discard

some patches that are either very smooth or have strong depth

discontinuities depicted by presence of edge, there are pixels

without any estimate of t. Value of t at those pixels needs to be

interpolated. Now, we can’t employ any generic interpolation

technique (e.g. bilinear) as they won’t be able to preserve

the underlying image structure that the transmittance map is

expected to follow. Therefore, we apply a Laplacian based

interpolation similar to Fattal [14]. The interpolated result is

obtained by minimizing the following function

φ(t(x)) =
∑

x

s(x)(t(x)−t̃(x))2+λ
∑

x

∑

y∈Nx

(t(x)− t(y))2

||I(x)− I(y)||2

(8)

where t̃(x) is the aggregated estimate obtained after processing

the patches. t(x) is the transmittance obtained through inter-

polated . Nx denotes the neighborhood of the pixel location

x. The presence map s(x) is taken as 1 if the estimate

of transmittance is available at x and 0 if it is not. The

regularization parameter λ controls the importance between

the two terms. The first term is the error term that enforces the

interpolated solution to be as close as the aggregated estimate.

The second term is responsible for maintaining the smoothness

in the transmittance map while interpolating t(x) from the

estimates available in the neighborhood. The smoothing is

performed based on ||I(x)− I(y)||2. The lower its value, the

more similar are the neighboring t(x) values. So, this term

ensures that transmittance map becomes smooth where the

input image is smooth, while allowing it to retain sharp profile

near the edges. Now for the whole image, the Eq. (8) can be

written as

Φ(to) = (to − t̃a)
TS(to − t̃a) + λtTo Lto. (9)

Here t̃a is t̃(x) in vector form. Similarly, to is the vector form

of t(x). S is a diagonal matrix with s(x) as its diagonal entries.

L is a laplacian matrix of the graph constructed from the input

image considering each pixel as a vertex and 1/||I(x)−I(y)||2

as the edge weights between pixels x and y. Each vertex is

connected to their neighbors. Now, minimizing Eq. (9) we

obtain t(x) for the whole image. The vector to that minimizes

Eq. (9), is uniquely defined by the solution of the following

linear equation,

(S + λL)to = St̃a. (10)

D. Haze-free image recovery

Once we obtain t(x) at every pixel, we can dehaze the input

image. We use this computed t(x) along with the atmospheric

light ‘A’ to obtain the dehazed result. Using the following

equation we calculate the estimated dehazed image Jc
e (x) as

Jc
e (x) = A−

A− Ic(x)

max{t(x), 0.0001}
. (11)

Note that, Jc
e (x) values lying beyond the valid intensity range

are clipped to the valid range. Second, we assume t(x) should

should be greater than zero, otherwise no scene information

would reach the observer or the sensor (camera). To ensure

this, we clip the value of t(x) arbitrarily at 0.0001 from lower.

Third, unlike many other methods we do not employ any kind

of post-processing technique.

V. EXPERIMENTAL DETAILS

In this section we describe in detail the setup we have used

to train our comparator and to generate the dehazed images

we report in the next section.

A. Training Data Generation

To train our patch comparator we synthesize hazy patches

from clean haze-free patches. These clean patches are taken

from 421 natural haze-free images. These images are members

of a subset of the 500 fog-free images used by Choi et. al. [28].

We have discarded some images where already haze is present,

specially at distant objects. We have extracted patches from

these images while discarding very smooth ones and the ones

with strong edges. This generates around 2.5 million patches.

However, we don’t use this directly to generate the training

data. As we have observed, using all these patches to generate

the training data may introduce bias in the trained comparator.

This was due to the fact that many of the patches are “similar”.

To alleviate this situation, we have clustered the patches taking

their RGB values and their first order gradient in horizontal

and vertical directions as features. The patches are clustered

using k-means with 1× 105 cluster centers. Then the patches

closest to the cluster centers are used as clean patches (only the

RGB part) to generate the training data. Each training datum

contains a patch pair and corresponding labels indicating the
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better patch. Each pair consists of a haze patch and its dehazed

version. To generate these patch pairs, we first generate a hazy

patch from a clean patch using the haze imaging equation (3)

with a random t(= t′) between 0 and 1 and two random values

of ‘A’. As ‘A’ is a 3 × 1 vector, we take 3 random values

between 0 to 1 to get a ‘A’. We dehaze this generated hazy

patch with the corresponding A’s and 30 different values of t.
Half of the t’s are greater than t′ and half of them are less than

it. The values of ts’ are taken in such a way that the values are

concentrated near t′ and are sparse as we go far from it. To

achieve this we first divide each range ((0, t′) and (t′, 1)) into

5 varying length bins with smaller bins near t′ and larger bins

at distant. For example, we take bins of size 1
2 ,

1
4 ,

1
8 , and 1

16 on

either half of the length. From each of the bins, however, we

sample equal number of t’s. Now as stated earlier we say the

dehazed patches obtained with t < t′ are bad dehazed patches

and dehazed patches obtained with t > t′ are good dehazed

patches and label them accordingly. This process is done for

each patch obtained from the haze-free images to generate the

training data to train the comparator.

B. Parameter Settings

We have taken patches of size 10×10 to train our compara-

tor and also to dehaze the test image. The patches with stan-

dard deviation less than 0.02 are discarded as smooth patch.

To discard patches with depth discontinuity (i.e., having strong

edge), we check if it contains pixels with gradient magnitude

greater than 0.5. The comparator is trained with mean squared

error loss for 50 epochs with batch size of 500 using the

Adadelta [29] optimizer. This setup is build on Keras 1.2.2

[30] with Theano 0.9.0 [31] and libgpuarray backend. With

this setup the training of the comparator is done on a machine

with Intel R© CoreTM i7-4790 CPU @ 3.60GHz and Nvidia

GTX 745. For computing the environmental illumination using

dark channel, we have taken patches of size 15× 15. But for

determining t from the patches, we have used 10×10 patches.

For t-searching algorithm θt is taken to be 5 × 10−4. Lastly

for interpolation, the regularization parameter λ (see Eq. (8)

and (9)) is taken to be 0.1.

VI. RESULTS

We have evaluated our method on synthetic dataset as

well as outdoor hazy images and compared the results with

that of the state-of-the-art dehazing methods and one con-

trast enhancement based method [2]. We report the results

we obtain on D-Hazy [32] and Fattal [14] dataset. D-Hazy

dataset1 contains synthetically generated hazy images. Fattal

dataset2 contains both synthetic and real world images and

provide environmental illumination (A) for each hazy image.

Therefore, the results for the real world images given by Fattal

[14] are reported using estimated ‘A’ as well as the provided

‘A’ values. To compare with Fattal [14] we have used the

dehazed images provided by the author. For comparing with

Pierre et al. [2], Ren et al. [17] and Berman et al. [18] we have

1http://www.meo.etc.upt.ro/AncutiProjectPages/D Hazzy ICIP2016/
2http://www.cs.huji.ac.il/∼raananf/projects/dehaze cl/results/

used the code provided by the authors in their default settings

to generate the results. Out of these two methods, Berman et

al. [18] relies on supplied ‘A’ value whereas Ren et al. [17]

compute it from the given image. So, to obtain the results of

Berman et al. [18] we have used the provided A values.

A. Quantitative Results

We quantitatively evaluate the results we obtain for synthetic

hazy images with known ground-truth. For this purpose we

have used synthetic images of the Fattal [14] dataset and

D-Hazy dataset [32]. D-Hazy dataset is synthesized from

Middlebury3 [33] and NYU Depth4 [34] dataset. The Fattal

dataset contains both indoor and outdoor images, while the D-

Hazy datasets contains images of various indoor scenes. We

quantitatively evaluate the results obtained on these images

using SSIM [35] and CIEDE2000 [36] metric as done by

Ancuti el al. [32]. PSNR is not reported as it is not very

effective in evaluating perceived image quality [37]. SSIM

is a full reference image quality metric that is based on the

hypothesis that the human visual system is highly adapted for

extracting structural information. So, given an distorted image

with its groundtruth, SSIM provides a score between [−1, 1],
with 1 denoting identical images. With this metric we can

compare how much a dehazed image is structurally similar

to the groundtruth. As color restoration is also crucial aspect

of image dehazing, CIEDE2000 is employed to measure the

color distortion. This compares two colors and gives a value

between [0, 100] with small values indicating similar colors.

We report average CIEDE2000 value for the whole image.

Here the results are reported separately for synthetic images

of Fattal dataset, and Middlebury and NYU section of D-Hazy

dataset.

For Fattal dataset the quantitative results are given in Table

I while in Fig.5 we illustrate the visual results for 4 images:

church, flower2, lawn1, and couch. The results show, the

method of Pierre et al. [2] is able to clear only a small amount

of haze and could not fix the color cast due to haze. This is

due to the fact that this method does not take into account

how images form under haze. This is also reflected in the

quantitative results: this method has the highest CIEDE2000

values. Comparison among the other results show that color

bias exists in the dehazed images obtained by Ren et al. [17]

and also in our method (with atmospheric light estimated using

Dark Channel Prior). This suggests that wrong estimation of

atmospheric light may introduce color bias in the dehazed

output because both the methods estimate ‘A’ from the image

where transmittance is minimum and intensity is high. This

does not happen if the actual A is supplied to the dehazing

method. This is reflected in the CIEDE2000 values for the

corresponding output images. In the output of Fattal [14] there

are some local color distortions, which does not exists in

the results of Berman et al. [18] and our method (given A).

The Table I reveal that our method performs well against the

competing methods.

3http://vision.middlebury.edu/stereo/data/scenes2014/
4http://cs.nyu.edu/∼silberman/datasets/nyu depth v2.html
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(a) Input (b) Pierre et al. (c) Fattal (d) Berman et al. (e) Ren et al. (f) Our (g) Our (Given A) (h) Ground Truth

Fig. 5. Results of synthetic images of Fattal dataset on church, flower2, lawn1, and couch

TABLE I
QUANTITATIVE RESULTS OBTAINED ON FATTAL DATASET IN TERMS OF SSIM (HIGHER THE BETTER) AND CIEDE2000 (LOWER THE BETTER) METRIC.

Pierre et al. Fattal Color Line Berman et al. Ren et al. Our Our (Given A)
SSIM CIEDE2000 SSIM CIEDE2000 SSIM CIEDE2000 SSIM CIEDE2000 SSIM CIEDE2000 SSIM CIEDE2000

church 0.887 19.69 0.964 6.342 0.952 10.069 0.871 20.257 0.84 25.424 0.93 7.077
couch 0.821 14.73 0.905 6.719 0.934 5.737 0.88 12.918 0.861 14.439 0.952 3.404

dolls 0.754 20.341 0.779 6.105 0.881 10.824 0.865 12.377 0.861 10.717 0.856 9.055
flower1 0.969 14.582 0.988 3.912 0.957 8.779 0.438 24.645 0.898 21.049 0.948 11.636
flower2 0.971 11.612 0.991 2.921 0.956 8.603 0.608 22.454 0.869 18.906 0.948 10.911
lawn1 0.869 21.753 0.972 6.653 0.962 8.229 0.831 21.003 0.84 21.455 0.967 6.196

lawn2 0.871 21.797 0.972 6.461 0.96 8.499 0.778 22.274 0.846 25.494 0.968 6.178

mansion 0.88 16.129 0.977 4.046 0.955 5.947 0.89 17.526 0.893 18.134 0.935 5.732
moebius 0.962 15.285 0.908 10.618 0.942 9.055 0.9 19.857 0.903 20.59 0.934 8.903

raindeer 0.842 13.743 0.948 4.104 0.882 11.028 0.814 15.492 0.86 13.348 0.969 2.923

road1 0.854 21.116 0.968 5.241 0.962 5.648 0.845 22.224 0.844 23.612 0.969 4.682

road2 0.819 23.501 0.962 7.119 0.95 8.865 0.881 20.175 0.839 22.652 0.952 6.334

Average 0.874 17.856 0.944 5.853 0.941 8.44 0.8 19.266 0.862 19.651 0.944 6.919

(a) Input (b) Pierre et
al.

(c) Berman et
al.

(d) Our (e) Ground
Truth

Fig. 6. Some Results of NYU portion of D-Hazy dataset

For the NYU section of D-Hazy dataset we only report the

average values of the metrics in Table II, as the dataset contains

1449 images. To illustrate the performances we show 4 result

images in Fig.6. The results show Pierre et al. [2] behaves the

same way as noted in the previous paragraph: it is not able to

clear dense haze. We could not get results for all the images

using the method of Ren et al [17], as the provided code ends

TABLE II
AVERAGE METRICS OBTAINED ON NYU PORTION OF D-HAZY DATASET.

Pierre et al. Berman et al. Our Our (Given A)
SSIM 0.7 0.73 0.73 0.794

CIEDE2000 24.283 13.33 13.78 13.036

with error for one image. The results of Berman et al. [18]

show that it has tendency to over estimate haze at places and

thereby turns the pixels black at those places, which is not

present in the results obtained by our method. Also in the last

image, the method of Berman et al. [18] has failed to properly

remove the haze over the carpet which our method has done

successfully. This is also reflected in the quantitative metric

values reported in Table II.

For the Middlebury section of D-Hazy dataset, we have il-

lustrated the results with four images (Fig.7): Piano, Bicycle1,

Motorcycle, and Flowers. The results show that the method of

Ren et al. [17] have failed to dehaze completely, particularly

when the value of t is relatively low. For Motorcycle and

Bicycle1 images, the floor is dehazed more by our method

because of it’s similarity in color with airlight. For the same

two image the method of Pierre et al. [2] is behaving in a

queer manner. The cycle has been enhanced to white and

the motorcycle image is completely black. Repeated run of

the code did not change the output. For the pipes image this

method is also giving black output. The results show that the
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(a) Input (b) Pierre et al. (c) Berman et al. (d) Ren et al. (e) Our (f) Ground Truth

Fig. 7. Results of Middlebury portion of D-Hazy dataset on Piano, Bicycle1, Motorcycle, and Flowers.

TABLE III
QUANTITATIVE RESULTS OBTAINED ON MIDDLEBURY PORTION OF D-HAZY DATASET.

Pierre et al. Berman et al. Ren et al. Our
SSIM CIEDE2000 SSIM CIEDE2000 SSIM CIEDE2000 SSIM CIEDE2000

Adirondack 0.835 21.835 0.891 10.473 0.897 12.417 0.884 9.824

Backpack 0.901 12.24 0.842 12.511 0.879 9.818 0.85 13.582
Bicycle1 0.678 26.528 0.841 15.617 0.938 4.94 0.959 5.564

Cable 0.595 42.545 0.751 14.764 0.645 29.439 0.608 30.826
Classroom1 0.646 34.637 0.883 7.667 0.74 22.33 0.818 12.075

Couch 0.551 35.422 0.785 10.165 0.618 23.162 0.753 9.907

Flowers 0.757 27.462 0.889 8.316 0.783 21.328 0.814 19.58
Jadeplant 0.545 37.706 0.716 11.508 0.606 27.65 0.659 24.411

Mask 0.842 14.738 0.816 12.318 0.85 13.317 0.845 14.365
Motorcycle 0.018 37.864 0.633 18.235 0.819 14.893 0.79 15.918

Piano 0.643 28.187 0.814 9.263 0.715 17.346 0.89 5.626

Pipes 0.015 26.941 0.782 10.926 0.688 21.626 0.761 12.888
Playroom 0.703 25.18 0.815 10.386 0.776 15.074 0.863 8.201

Playtable 0.778 24.066 0.9 8.746 0.86 13.044 0.909 7.577

Recycle 0.904 15.963 0.925 10.87 0.952 7.8 0.94 9.357
Shelves 0.874 17.326 0.916 8.42 0.944 7.701 0.924 7.772
Shopvac 0.602 42.268 0.788 16.74 0.667 32.435 0.735 23.386
Sticks 0.925 14.118 0.953 6.423 0.961 5.398 0.93 7.34

Storage 0.769 27.53 0.869 8.452 0.824 18.971 0.855 15.748
Sword1 0.874 16.832 0.853 14.629 0.914 10.191 0.85 14.584
Sword2 0.821 19.907 0.913 9.82 0.885 13.997 0.881 14.769

Umbrella 0.872 16.507 0.917 9.672 0.909 12.203 0.903 12.728
Vintage 0.926 11.2 0.795 14.895 0.969 5.31 0.939 7.612
Average 0.698 25.087 0.838 11.339 0.819 15.669 0.841 13.201

method of Berman et al. [18] tends to over-enhance the results

a bit. Table III reveals that on an average our method performs

quite well.

B. Qualitative Results

For the real world images we qualitatively evaluate the

results as we don’t have ground truth for these images. We

show the results for 8 different outdoor images (as shown

in Fig.8 and Fig.9) to 11 persons in our lab and ask them

to arrange in order of quality. Here we report the overall

evaluation of the results as follows. The method of Pierre

et al. [2] is not able to clear dense haze and color cast due

to haze, and the method of Berman et al. [18] tend to over-

enhance the results. For both the methods these trends is also

observed in the quantitative evaluations section. Also in line

with observation made in the previous section, the colors of

the results of Ren et al. [17] and our method is different

from results of obtained by other methods because of different

way of choosing atmospheric light. This also shows that the

correct estimation of transmittance depends on atmospheric

light. Fattal [14] achieves better results for hongkong and

herzeliya images, but for ny12 image the color bias is clearly

visible. Blueish tint is present in the result for ny12 image of

Fattal [14], but that is not present in the output of our method

with the given value of ‘A’. Finally, For all other images our

method achieves comparable results.
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(a) Input (b) Pierre et al. (c) Fattal (d) Berman et al. (e) Ren et al. (f) Our (g) Our (Given A)

Fig. 8. Results of real world images of Fattal dataset on dubai, florence, herzeliya, hongkong, and ny12.

(a) Input (b) Pierre et al. (c) Fattal (d) Berman et al. (e) Ren et al. (f) Our (g) Our (Given A)

Fig. 9. Results of real world images of Fattal dataset on forest, cones, and house.

VII. CONCLUSION

In this paper we have proposed an image dehazing method

that tries to estimate transmittance in each patch by comparing

the dehazed version with the input hazy one. The comparison

is done by our proposed patch quality comparator. With this

CNN based comparator in our hand, we employ binary search

to find transmittance in each patch. Although we have used

the method of Dark Channel Prior to compute environmental

illumination, the results show it is not always accurate. The

output greatly improves with correct environmental illumi-

nation. This shows that the environmental illumination is

crucial in dehazing an image, although it has not received

the required attention. The future work could be focused on

accurate estimation of environmental illumination for both day

and night time cases.
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